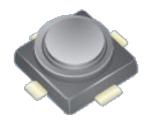


RF Low Noise FET CE3522K2

12GHz Super Low Noise FET in Hollow Plastic PKG

DESCRIPTION


- Super Low Noise and High Gain
- Hollow (Air Cavity) Plastic package

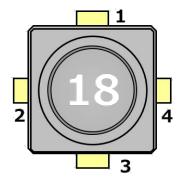
FEATURES

 Super Low noise figure and high associated gain: NF = 0.32 dB TYP., Ga = 14.0 dB TYP.
 @VDS=2V, ID=10mA, f=12GHz

PACKAGE

Micro-X plastic package

APPLICATIONS


 KU Band LNB (Low Noise Block) Suitable for 1st Stage

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Description
CE3522K2	CE3522K2-C1	Micro-X plastic	18	 Embossed tape 8 mm wide
		package		Pin 4 (Gate) faces the perforation side of the tapeMOQ 10kpcs/reel
OLOGZZINZ	OL3022N2-01		10	 Pin 4 (Gate) faces the perforation side of the tape

PIN CONFIGURATION AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	Source
2	Drain
3	Source
4	Gate

ABSOLUTE MAXIMUM RATINGS

(TA = +25°C, unless otherwise specified)

TR = +25 C, unless otherwise specified)				
Parameter	Symbol	Rating	Unit	
Drain to Source Voltage	V_{DS}	4.0	V	
Gate to Source Voltage	V_{GS}	-3.0	V	
Drain Current	l _D	I _{DSS}	mA	
Gate Current	lg	80	μA	
Total Power Dissipation	P _{tot}	125	mW	
Channel Temperature	T _{ch}	+150	°C	
Storage Temperature	T _{stg}	-55 to +125	°C	
Operation Temperature	T _{op}	-55 to +125 ^{Note}	°C	

Note Refer to Total Power Dissipation vs. Ambient Temperature graph on page 4

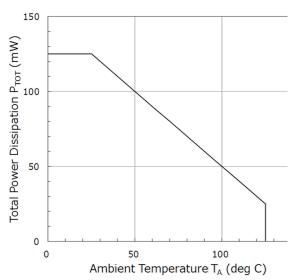
RECOMMENDED OPERATING RANGE

(TA = +25°C, unless otherwise specified)

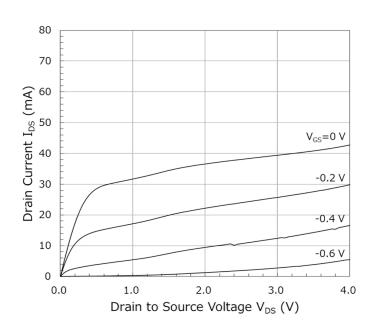
(11. Ze e, amees salermes speemes)					
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	V _{DS}	+1	+2	+3	V
Drain Current	ΙD	5	10	15	mA

ELECTRICAL CHARACTERISTICS

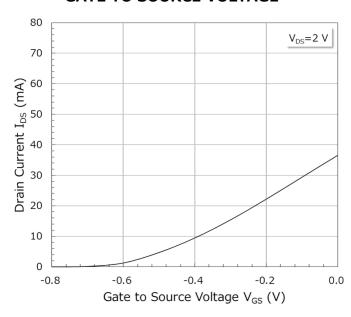
(TA = +25°C, unless otherwise specified)


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	I _{GSO}	V _{GS} = -3.0V	-	0.4	10	μA
Saturated Drain Current	I _{DSS}	$V_{DS} = 2V$, $V_{GS} = 0V$	23	40	57	mA
Gate to Source Cut-off Voltage	$V_{GS (off)}$	$V_{DS} = 2V, I_{D} = 100\mu A$	-1.10	-0.75	-0.39	V
Transconductance	Gm	$V_{DS} = 2V, I_{D} = 10mA$	47	62	-	mS
Noise Figure	NF	$V_{DS} = 2V, I_{D} = 10mA,$	-	0.32	0.52	dB
Associated Gain	Ga	f = 12GHz	12.8	14	-	dB

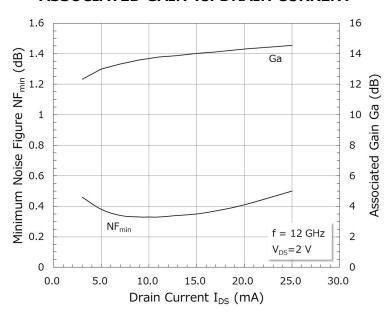
Typical Characteristics:


(TA=+25℃, unless otherwise specified)

TOTAL POWER DISSIPATION vs. AMBIEN

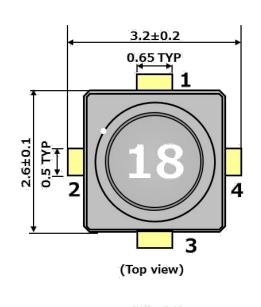


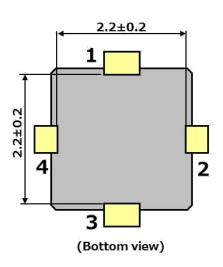
T TEMPERATURE

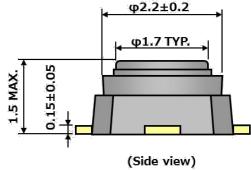

DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE

MINIMUM NOISE FIGURE & ASSOCIATED GAIN vs. DRAIN CURRENT


S-PARAMETERS


S-Parameters are available on CEL's Part Summary page under S-parameters


RECOMMENDED SOLDERING CONDITIONS

Recommended Soldering Conditions are available on CEL's Part Summary page under Associated Documents

PACKAGE DIMENSIONS:

PIN CONNECTIONS

1: Source 2: Drain 3: Source 4: Gate

Unit [mm]

REVISION HISTORY

Version	Change to current version	Page(s)
CDS-0018-04 (Issue A) January 12,2023	Initial datasheet	N/A
- Canada, y 12,2020		

[CAUTION]

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice.
- You should not alter, modify, copy, or otherwise misappropriate any CEL product, whether in whole or in part.
- CEL does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of CEL products or technical information described in this document. No license, expressed, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of CEL or others.
- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. CEL assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- CEL has used reasonable care in preparing the information included in this document, but CEL does not warrant
 that such information is error free. CEL assumes no liability whatsoever for any damages incurred by you resulting
 from errors in or omissions from the information included herein.
- Although CEL endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a CEL product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures
 - Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- Please use CEL products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
 CEL assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of CEL.
- Please contact CEL if you have any questions regarding the information contained in this document or CEL products, or if you have any other inquiries.

This document is subject to change without notice.

[CAUTION]

This product uses gallium arsenide (GaAs) of the toxic substance appointed in laws and ordinances. GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- Do not dispose in fire or break up this product.
- Do not chemically make gas or powder with this product.
- When discarding this product, please obey the laws of your country.
- Do not lick the product or in any way allow it to enter the mouth.

[CAUTION]

Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

CEL Headquarters • 5201 Great America Parkway, Suite 320 • Santa Clara, CA 95054 • Tel: (408) 919-2500 • www.cel.com

For a complete list of sales offices, representatives and distributors, please visit our website: www.cel.com/contactus
For inquiries email us at rfw@cel.com