LONG CREEPAGE TYPE
HIGH ISOLATION VOLTAGE
6 PIN OPTOCOUPLER

FEATURES

• HIGH ISOLATION VOLTAGE
 BV: 5 kV r.m.s. MIN
• LONG CREEPAGE AND CLEARANCE DISTANCE
 8 mm MIN
• HIGH COLLECTOR TO EMITTER VOLTAGE
 VCEO: 80 V MIN
• HIGH SPEED SWITCHING
 tr = 3 µs, tf = 5 µs TYP
• HIGH CURRENT TRANSFER RATIO
 CTR = 200% TYP
• 6 PIN DUAL IN-LINE PACKAGE

DESCRIPTION

PS2651and PS2652 are optically coupled isolators containing a GaAs light emitting diode and an NPN silicon phototransistor in a plastic DIP (Dual In-Line Package). PS2651 has a base pin and PS2652 has no base pin. Creepage distance and clearance of leads are over 8 millimeters. PS2651L2 and PS2652L2 are lead bending type (Gull-wing) for surface mounting.

APPLICATIONS

Interface circuit for various instrumentations and control equipment.

• AC LINE/DIGITAL LOGIC
• DIGITAL LOGIC INTERFACE
• TWISTED PAIR LINE RECEIVER
• TELEPHONE/TELEGRAPH LINE RECEIVER
• HIGH FREQUENCY POWER SUPPLY FEEDBACK CONTROL
• RELAY CONTACT MONITOR
• POWER SUPPLY MONITOR

ELECTRICAL CHARACTERISTICS (TA = 25°C)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PS2651, PS2651L2, PS2652, PS2652L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOLS</td>
<td>PARAMETERS</td>
</tr>
<tr>
<td>Diode</td>
<td>VF Forward Voltage, IF = 10 mA</td>
</tr>
<tr>
<td></td>
<td>IR Reverse Current, Vb = 5 V</td>
</tr>
<tr>
<td></td>
<td>C Junction Capacitance, V = 0, f = 1.0 MHz</td>
</tr>
<tr>
<td>Transistor</td>
<td>ICEO Collector to Emitter Dark Current, VCE = 80 V, IF = 0</td>
</tr>
<tr>
<td></td>
<td>BCEO Collector to Emitter Breakdown Voltage, IC = 1 mA, IB = 0</td>
</tr>
<tr>
<td></td>
<td>BVEO Collector to Emitter Breakdown Voltage, IE = 100 µA, IB = 0</td>
</tr>
<tr>
<td>Coupled</td>
<td>CTR Current Transfer Ratio¹, IF = 5 mA, VCE = 5 V</td>
</tr>
<tr>
<td></td>
<td>VCE(sat) Collector Saturation Voltage, IF = 10 mA, IC = 2 mA</td>
</tr>
<tr>
<td></td>
<td>RI-2 Isolation Resistance, Vin-out = 1.0 k V</td>
</tr>
<tr>
<td></td>
<td>C1-2 Isolation Capacitance, V = 0, f = 1.0 MHz</td>
</tr>
<tr>
<td></td>
<td>tr Rise Time², VCC = 5 V, IC = 2 mA</td>
</tr>
<tr>
<td></td>
<td>tf Fall Time², VCC = 5 V, IC = 2 mA</td>
</tr>
</tbody>
</table>

1. CTR rank
 KD : 160 to 400 (%)
 LD : 80 to 240 (%)
 MD : 50 to 120 (%)

2. Test Circuit for Switching Time

California Eastern Laboratories
ABSOLUTE MAXIMUM RATINGS\(^1\) (\(T_A = 25^\circ C\))

<table>
<thead>
<tr>
<th>SYMBOLS</th>
<th>PARAMETERS</th>
<th>UNITS</th>
<th>RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>(V_R) Reverse Voltage</td>
<td>V</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(I_F) Forward Current</td>
<td>mA</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(P_D) Power Dissipation</td>
<td>mW</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>(I_F) (Peak) Peak Forward Current PW = 100 (\mu)s, Duty Cycle 1%</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Transistor</td>
<td>(V_{CEO}) Collector to Emitter Voltage</td>
<td>V</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(V_{ECO}) Emitter to Collector Voltage</td>
<td>V</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(I_C) Collector Current</td>
<td>mA</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(P_C) Power Dissipation</td>
<td>mW</td>
<td>150</td>
</tr>
<tr>
<td>Coupled</td>
<td>(BV) Isolation Voltage(^2)</td>
<td>V(_{r.m.s.})</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>(T_{STG}) Storage Temperature</td>
<td>°C</td>
<td>-55 to +150</td>
</tr>
<tr>
<td></td>
<td>(T_{OP}) Operating Temperature</td>
<td>°C</td>
<td>-55 to +100</td>
</tr>
</tbody>
</table>

Notes:
1. Operation in excess of any one of these parameters may result in permanent damage.
2. AC voltage for 1 minute at \(T_A = 25^\circ C\), RH = 60 % between input (Pin No. 1, 2, 3 Common) and output (Pin No. 4, 5, 6 Common).

TYPICAL PERFORMANCE CURVES (\(T_A = 25^\circ C\))

- **Diode Power Dissipation vs. Ambient Temperature**
- **Transistor Power Dissipation vs. Ambient Temperature**
- **Forward Current vs. Forward Voltage**
- **Collector Current vs. Collector to Emitter Voltage**
TYPICAL PERFORMANCE CURVES (TA = 25 °C)

Collector to Emitter Dark Current vs. Ambient Temperature

Collector Current vs. Collector Saturation Voltage

Normalized Output Current vs. Ambient Temperature

Current Transfer Ratio (CTR) vs. Forward Current

Switching Time vs. Load Resistance

Other Graphs and Tables:*

- Normalized Current Transfer Ratio (CTR) at different temperatures.
- Collector current vs. Collector Saturation Voltage for various bias conditions.
- Normalized output current vs. ambient temperature.
- Current transfer ratio (%) vs. forward current.
- Switching time vs. load resistance for different voltage and current levels.

Additional Notes:

- Sample CTR at 290%.
- Switching time values for different load resistances.
TYPICAL PERFORMANCE CURVES (T_a = 25 °C)

FREQUENCY RESPONSE

- Voltage Gain, A_V (dB)

CTR DEGRADATION

- CTR Test condition

OUTLINE DIMENSIONS (Units in mm)

PS2651, PS2652

- 10.16 MAX.
- 65 4
- 123
- 3.8 MAX
- 0.50 ± 0.10
- 0.25 M
- 2.8 MAX 4.25 MAX
- 0.35
- 1.34
- 2.54
- 2.54 MAX
- 10.16
- 7.62
- 6.5
- 0 to 15 °

PS2651L2, PS2652L2

- 10.16 MAX.
- 64
- 13
- 11.8 ± 0.4
- 10.16
- 7.62
- 6.5
- 0.9 ± 0.25

PIN CONNECTION (Top View)

PS2651, PS2651L2

1. Anode
2. Cathode
3. NC
4. Emitter
5. Collector
6. Base

PS2652, PS2652L2

1. Anode
2. Cathode
3. NC
4. Emitter
5. Collector
6. NC

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS

CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • Fax (408) 988-0279

24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM

DATA SUBJECT TO CHANGE WITHOUT NOTICE

PRINTED IN USA ON RECYCLED PAPER -3/98